New convergence proofs of modulus-based synchronous multisplitting iteration methods for linear complementarity problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulus-based synchronous multisplitting iteration methods for linear complementarity problems

To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based synchronous multisplitting iteration method and the corresponding symmetric modulus-based multisplitting relaxation methods. The convergence theorems are established when the system matrix is an H+-matrix, which improve the existing converg...

متن کامل

Global Modulus-Based Synchronous Multisplitting Multi-Parameters TOR Methods for Linear Complementarity Problems

In 2013, Bai and Zhang constructed modulus-based synchronous multisplitting methods for linear complementarity problems and analyzed the corresponding convergence. In 2014, Zhang and Li studied the weaker convergence results based on linear complementarity problems. In 2008, Zhang et al. presented global relaxed non-stationary multisplitting multi-parameter method by introducing some parameters...

متن کامل

Modulus-based GSTS Iteration Method for Linear Complementarity Problems

In this paper, amodulus-based generalized skew-Hermitian triangular splitting (MGSTS) iteration method is present for solving a class of linear complementarity problems with the system matrix either being an H+-matrix with non-positive off-diagonal entries or a symmetric positive definite matrix. The convergence of the MGSTS iterationmethod is studied in detail. By choosing different parameters...

متن کامل

A multisplitting method for symmetric linear complementarity problems

Over the years, many methods for solving the linear complementarity problem (LCP) have been developed. Most of these methods have their origin in solving a system of linear equations. In particular, much attention has recently been paid on the class of iterative methods called the splitting method, which is an extension of the matrix splitting method for solving a system of linear equations suc...

متن کامل

Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems

In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text]-matrix, respecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2015

ISSN: 0024-3795

DOI: 10.1016/j.laa.2015.04.029